
AC215: Advanced Practical Data Science, MLOps

Camilo Fosco, Pedro Freitas, Juan Segundo Hevia
Tekal, Inc

Transforming Computer Vision Models 
into Cloud-based Products

http://www.tekal.ai
http://www.tekal.ai


Who are we?

Reverse-Engineering 

Memory and Attention

MIT spinoff incubated by:

Harvard Spark 
Grants winner

http://www.tekal.ai
http://www.tekal.ai


MEMORABILITY SALIENCY

Cognitive gatekeepers of impact

We Predict the Cognitive Impact of Visual Content
We allow clients to assess and improve creative assets before publishing them

We focus on two key intrinsic properties of visual stimuli:

http://www.tekal.ai
http://www.tekal.ai


64 87The probability that a visual 
element will be remembered in 
the future after being seen once.

Memorability

This helps make ads with lasting impact: 
building awareness faster and with less 
impressions.

http://www.tekal.ai


High Memorability Low Memorability

http://www.tekal.ai


What catches a viewer’s eye 
in the first 3 to 5 seconds.

Saliency

This helps minimize the risk that 
the key elements don’t capture 
attention - like logo, product 
and main claim.

http://www.tekal.ai


These phenomena are based on low level brain biases 
that are consistent across demographics:

Predictable!

http://www.tekal.ai


DNN models

We build models that predict these metrics

Our nets take image or video as input, and 
generate saliency maps + recall indicators.

http://www.tekal.ai


How does this work?

Data collection Deep-Learning 
models

Model validation

2,180,000+
Human 

Responses

1,140,000+
Images

18,000+
Videos

0.04
Mean Absolute Error 

in Memorability

90%
Accuracy in Saliency 

(AUC)

High accuracy

http://www.tekal.ai


Our product: Cognitive Analytics Dashboard

http://www.tekal.ai


Our inference pipeline

Inference Pipeline

Clients

Hosting & Security

S3

CloudFront

Cognito

Amplify

Initial Storage

     S3

DynamoDB

Visual Content

Asset Files( Video, 
Images)

Metadata

Brand 
Campaign
Chosen Competition

Result Storage

     S3

DynamoDB

Visual Content

Saliency heatmaps
Context Simulations

API 
Gateway

Step Function

Elastic 
Container
Registry

+
Lambda

Containerized inference 
functions with deployed 

models
Predictions

Memorability Scores
Saliency scores
Recall Probabilities

Creatives Upload

Query Results

Processing

Write Results

Hosting & 
Security

Input Storage

Inference Pipeline

Result Storage

http://www.tekal.ai


Let’s back up… How did we get here?

http://www.tekal.ai


Let’s back up… How did we get here?

● Let’s go back to the point where we obtain our checkpoint

● We just finished our initial research process, and we have a trained model

● We have no way of reliably showing predictions to the user, or receiving their inputs

Trained Model

Deployment 
Infrastructure

We need 
this!

http://www.tekal.ai


We have a trained model, now what?

To put it in production, we deploy it to a server and make it available through an API 
endpoint.

First Attempt

● Flask API deployed to a virtual machine
● Relational database to store information

Virtual Machine

Containers

Flask application

Postgress

Clients

http://www.tekal.ai


We have a trained model, now what?

Main issues with first attempt: 

● User behavior: usage was not frequent, but with high demand peaks when needed
○ Idle most of the time, but we were paying for it

● Too much time setting up the server and API configuration

● Database management was also a pain as usage was increasing and we were quickly adding 
new variables to the db.

http://www.tekal.ai


Decision: Let’s go serverless!

“Serverless computing is a cloud computing execution model in which the cloud provider allocates 
machine resources on demand, taking care of the servers on behalf of their customers.” 

Wikipedia

Greater Scalability Reduced Cost Faster go-to-market-time

http://www.tekal.ai


AWS Serverless Stack

How does this look on Google Cloud?

Storage: GC Storage

Database: Cloud Bigtable, GC Datastore

API: API Gateway

Code execution: GC Functions

Orchestration: GC Workflow

How does this look on AWS?

Storage: S3

Database: DynamoDB

API: API Gateway

Code execution: Lambda

Orchestration: Step Functions

http://www.tekal.ai


AWS S3

● Amazon Simple Storage Service (Amazon S3) is the “hard drive” of our serverless 
application;

● It has built-in security features to prevent unauthorized access;

○ encryption features and access management tools are key when handling 
with client’s assets

Google Cloud Storage

http://www.tekal.ai


AWS Lambda

Serverless, event-driven compute service that lets you run code for an application or backend 
service without provisioning or managing servers;

Google Cloud Functions

Deployment as 
container images

Scalable Functions can be 
written in many 

languages

Reduced Cost

http://www.tekal.ai


AWS Step Functions

Visual workflow service to build distributed applications, 
automate IT and business processes, and build data and 
machine learning pipelines.

Google Cloud Workflows

http://www.tekal.ai


AWS DynamoDB

DynamoDB is a fully-managed, NoSQL database provided by Amazon Web Services

Google Cloud Datastore

http://www.tekal.ai


AWS API Gateway

Intermediate layer to handle interactions between our front-end and our database

It provides useful functionalities for scaling applications up

● Security authentication
● Traffic handling and throttling requests

API Gateway

http://www.tekal.ai


Our architecture

Inference Pipeline

Clients

Hosting & Security

S3

CloudFront

Cognito

Amplify

Initial Storage

     S3

DynamoDB

Visual Content

Asset Files( Video, 
Images)

Metadata

Brand 
Campaign
Chosen Competition

Result Storage

     S3

DynamoDB

Visual Content

Saliency heatmaps
Context Simulations

API 
Gateway

Step Function

Elastic 
Container
Registry

+
Lambda

Containerized inference 
functions with deployed 

models
Predictions

Memorability Scores
Saliency scores
Recall Probabilities

Creatives Upload

Query Results

Processing

Write Results

http://www.tekal.ai


Our pipeline’s Lambdas

Process 
image

Valid 
format?

Simulate 
context

Simulated img S3 
key

Model scores 

Check if file format is 
supported

Update DB

Model Scores

Simulate img in spatial 
context placement and 
upload new asset to S3

Runs inference.
Uploads generated 

heatmap to S3

Update DB with 
results

Status: 200

Original img S3 key

Simulated 
img S3 key

Original img S3 key

Status: 200,
Original img 

S3 key

http://www.tekal.ai


http://www.tekal.ai


Sounds good so far, but what about limitations?

Main Lambdas limitations for a Computer Vision application:

● Only CPU - no GPU
● Memory allocation cap: 10240 MB
● Maximum runtime: 15 minutes

http://www.tekal.ai


Sounds good so far, but what about limitations?

Solution: Work with them as they were meant to be to 
harness their benefits

● Lambda functions are meant to be small and quick 
rather than being large applications

○ Have each lambda perform a small, specific task;
○ Split tasks and run parallel lambdas;

● Convert heavy videos to a lighter format and resolution 
before inference.

http://www.tekal.ai


Concatenate

Split a longer task into smaller parallelizable tasks

Example:
● Say we want to process one video, frame by frame.

○ If the video is too long, the processing job may take too long for an 
AWS Lambda;

○ A solution might be to split the video in smaller chunks, and then 
run the processing job in separate parallel lambda instances;

○ Later the output for each chunk are concatenated.

InferenceSplit
Original 
Video

Processed 
video

http://www.tekal.ai


We’ve looked at the pipeline. What about the database?

● We need to store millions of visual assets
● We need to access them reasonably fast
● We need to be able to query specific views of our DB
● We need it to be secure

SQL DB DynamoDB

http://www.tekal.ai


SQL Limitations: Scalability

At the start we some limitations with our SQL Table

● Scalability: Usual OutOfMemory errors

Early on, our SQL database (AWS RDS) usually ran out of memory when handling sorting or complex filters 
and we had to upgrade its specs. This was both hard to scale and expensive if we expected to handle 
large amounts of data down the road.

http://www.tekal.ai


SQL Limitations: Design Flexibility

At the start we some limitations with our SQL Table

● Design Flexibility: SQL Schema constrained fast data modelling

We found ourselves coming up with inefficient data models because we needed to iterate fast while coming 
up with new features.

http://www.tekal.ai


SQL Limitations: Serverless Integration

At the start we some limitations with our SQL Table

● Serverless Integration: Underperforming adaptive capacity

Serverless applications require their components to be constantly adapting to workloads. AWS RDS 
required us to actively go and upgrade the resources we had deployed to match larger workloads, leaving 
the product down for maintenance.

http://www.tekal.ai


Query Dynamo 
Router

Bag ID1

1

2

3

This search across all bags remains O(1) regardless of the number of bags

Primary Key

DynamoDB in a nutshell Partition

http://www.tekal.ai


Fortunately, both of them have

No SQL

Tekal’s data infrastructure reminds me of...

http://www.tekal.ai


● Built to scale. Queries’ time complexity 
remains constant independently of data 
storage size

How it differs from SQL?

PROS
compared to SQL

● Flexibility. Doesn’t have a 
constraining schema definition (but 
is definitely not schema-less)

● Fast. All our queries point to 
specific elements in our data 
model, leveraging Dynamo router 
logic.

http://www.tekal.ai


● Learning curves. SQL has been here for 
such a long time! There’s tons of 
documentation for a wide range of 
applications.

How it differs from SQL?

CONS 
compared to SQL

● No JOINs, no WHEREs. Aggregations and 
filtering are not as straightforward, which can 
make data modelling more challenging.

JOIN
WHERE

http://www.tekal.ai


Querying DynamoDB

Data modelling depends on the way future users will be trying to query the data: the 
database access patterns.

This ensures that we only store the data we need, with the structure we need, complying with 
the front end’s queries.

http://www.tekal.ai


- With a simple primary key

PK Item collection Filtering

- WIth a composite primary key (partition key-sorting key)

PK, SK Unique Item

- WIth a composite key with a condition imposed on the sorting key

PK Items where SK begins 
with ... Filtering

Querying DynamoDB

http://www.tekal.ai


PK = ORG#BERKSHIRE

AND

SK BEGINS WITH “USER#”

A few examples: query with composite primary key

http://www.tekal.ai


In Tekal, almost all query operations happen on the asset entity. 

Our partitions are mostly assets

How do we leverage NoSQL?

What’s an asset?

ImageVideo

http://www.tekal.ai


How do we leverage NoSQL?

http://www.tekal.ai


What if we want to get all assets for a given client?

http://www.tekal.ai


GSIs allow to create a projection of a DynamoDB table using other attributes 
(distinct from PK and SK) as a primary key.

Global Secondary Indexes come to the rescue

Updated automatically Allow for reduced table 
views

Google Cloud Datastore Indexes

http://www.tekal.ai


How do we leverage GSIs?

http://www.tekal.ai


Wait but what about aggregations?

http://www.tekal.ai


“Every time we need to compute a Brand’s average score, we just query all the scores for that 
brand and compute the average at runtime.”

Dynamo charges by queried item size (using a conversion units known as reading/writing 
capacity units). By querying all of the client’s assets, we might end up handling very large items.

Could we use GSIs? Yes, sometimes

AVERAGES

http://www.tekal.ai


We use Dynamo Streams to listen to Create, Update and Delete 
operations in our databases. Streams allows us to code automatic actions 
when a specific update happens.

Dynamo Streams bring your table alive

Update on database

New asset added

Accumulate score

Add asset’s score to client’s 
cumulative score

Apply logic

Identify score and client ID

Google Cloud Datastream

http://www.tekal.ai


Stealing from Hogwart’s Engineering team

http://www.tekal.ai


Cool. Can we version control this setup?

http://www.tekal.ai


Code & Deploy: AWS Serverless Application Model

The AWS Serverless Application Model (SAM) is a framework for building serverless 
applications. It provides shorthand syntax to express functions, APIs, databases, and 
event source mappings. Under the hood, it builds up on AWS CloudFormation to 
deploy entire architectures with YAML and a few configuration files.

Ansible

Write a blueprint for the 
architecture

Check modifications to 
current resources

Launch new resource 
versions

http://www.tekal.ai


Code & Deploy: AWS Serverless Application Model Ansible

AWS SAM

Productivity!

http://www.tekal.ai


Code & Deploy: AWS Serverless Application Model Ansible

One repository to rule them all

CORS Policies for API 
endpoints

Environment variables for 
Lambda Functions

Easy prototyping through 
repo branches

Track all  inference 
containers in a single 

place

Moving out of AWS User Console and into...

http://www.tekal.ai


Continuous Integration / Continuous Deploy pipeline

Infrastructure as Code

Code Test Deploy

http://www.tekal.ai


Strict set of tests to 
protect reading and 

writing on our 
database

Focus on UX and bug 
detection

DEV Unit 
tests STAGING Integration 

tests PROD

Queries
Business logics 

Major Front end issues

API efficiency
RCU & WCU

User-facing interactions

Track new releases
Detect access patterns



DEV Unit 
tests STAGING Integration 

tests PROD

Protect the clientProtect the infrastructure

Our approach

Know the client

Development Dynamo table
Development API

Staging Dynamo table
Staging API

Live product



Test: Github Actions

Since implementing Actions, we found a way of safeguarding our deployed 
functionalities and our development workflow.

Code AWS SAM
Build and Deploy

GH Actions
Unit Tests

Linting

Serve to user

Fix

http://www.tekal.ai


Key tips to build vision products on the Cloud

Have model versions that can 
run on restricted hardware

Containerize

Build a parallelizable pipeline SAM + CI/CD!

http://www.tekal.ai


Thank you



PK = ORG#FACEBOOK

A few examples: query with simple primary key

http://www.tekal.ai


PK = ORG#FACEBOOK

AND

SK = ORG#FACEBOOK

A few examples: query with composite primary key

http://www.tekal.ai


Global Secondary Indexes example

http://www.tekal.ai


Global Secondary Indexes example

http://www.tekal.ai


New asset is 
added

 for Client A
Client A’s cumulative score + = New asset score

Client A’s 
asset 

score is 
modified

Client A’s cumulative score + = (New score - Old Score)

New asset is 
deleted

 for Client A
Client A’s cumulative score - = New asset score

Dynamo Streams example

http://www.tekal.ai


Client’s A 
asset has its 

metadata 
modified

Client A’s cumulative score - = asset score

Client B’s cumulative score + = asset score

New client is set, now asset belongs to client B

Dynamo Streams example

http://www.tekal.ai


“Every time we need to compute a Brand’s average score, we just query all the scores for that 
brand and compute the average at runtime.”

- One very rich and patient Software Engineer

We resolved the dilemma by comparing costs

Dynamo charges by queried item size (using a conversion units known as reading/writing 
capacity units). By querying all of the client’s assets, we might end up handling very large items.

By storing the cumulative counts, we significantly reduce query size while writing 
operations for updates  are kept to a minimum, on-demand basis. So far, Dynamo Streams 
free-tier quotas are more than enough for the short term demands.

Another approach… why not use GSIs?

http://www.tekal.ai


Roadmap for enhancing our deployment workflow

Controlled deployment 
strategies and handle 
time-to-market more 

efficiently

Track user behaviour 
and assess user 

experience through the 
user themselves

In-depth monitoring of 
the application’s 

execution with detailed 
tracebacks on 

exceptions

http://www.tekal.ai

